Email updates

Keep up to date with the latest news and content from Journal of Molecular Signaling and BioMed Central.

Open Access Short report

Molecular mechanism of regulation of OGG1: tuberin deficiency results in cytoplasmic redistribution of transcriptional factor NF-YA

Samy L Habib

Author Affiliations

South Texas Veterans Healthcare System, Geriatric Research, Education and Clinical Center, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA

Journal of Molecular Signaling 2009, 4:8  doi:10.1186/1750-2187-4-8

Published: 29 December 2009

Abstract

The tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors, both angiomyolipomas and renal cell carcinomas. On the other hand, mice-deficient in the DNA repair enzyme OGG1 spontaneously develop adenoma and carcinoma. Downregulation of tuberin results in a marked decrease of OGG1 and accumulation of oxidative DNA damage, (8-oxodG) in cultured cells. In addition, tuberin haploinsufficiency is associated with the loss of OGG1 and accumulation of 8-oxodG in rat kidney tumor. Deficiency in tuberin results in decreased OGG1 and NF-YA protein expression and increased 8-oxodG in kidney tumor from TSC patients. In the current study, molecular mechanisms by which tuberin regulates OGG1 were explored. The deficiency of tuberin was associated with a significant decrease in NF-YA and loss of OGG1 in kidney tumors of Eker rat. Downregulation of tuberin by siRNA resulted in a marked decrease in NF-YA and OGG1 protein expression in human renal epithelial cells. Localization of NF-YA in wild type and tuberin-deficient cells was examined by western blot and immunostaining assays. In wild type cells, NF-YA was detected in the nucleus while in tuberin deficient cells in the cyotoplasm. Introducing adenovirus-expressing tuberin (Ad-TSC2) into tuberin-deficient cells restored the nuclear localization of NF-YA. These data define a novel mechanism of regulation of OGG1 through tuberin. This mechanism may be important in the pathogenesis of kidney tumors in patients with TSC disease.